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ABSTRACT

Turbine performance directly affects engine

specific impulse, thrust-to-weight ratio, and cost in a

rocket propulsion system. A global optimization
framework combining the radial basis neural network

(RBNN) and the polynomial-based response surface
method (RSM) is constructed for shape optimization of

a supersonic turbine. Based on the optimized
preliminary design, shape optimization is performed for

the first vane and blade of a 2-stage supersonic turbine,

involving O(10) design variables. The design of

experiment approach is adopted to reduce the data size
needed by the optimization task. It is demonstrated that
a major merit of the global optimization approach is

that it enables one to adaptively revise the design space
to perform multiple optimization cycles. This benefit is

realized when an optimal design approaches the
boundary of a pre-defined design space. Furthermore,

by inspecting the influence of each design variable, one
can also gain insight into the existence of multiple

design choices and select the optimum design based on
other factors such as stress and materials
considerations.

1. INTRODUCTION

Turbine performance directly affects engine

specific impulse, thrust-to-weight ratio, and cost in a
rocket propulsion system. In the last three decades,

supersonic turbines have not been designed for rocket
propulsion in the U.S. There are growing interests to

reconsider this technology for space transport.
Designing a multistage turbine is a labor-intensive task
because of the substantial number of variables involved

in the problem. Clearly, a formal optimization

methodology will be valuable to help meet the design
goals by maximizing the performance objective while

addressing the structures and materials considerations.

A number of papers using approaches such as
sensitivity evaluations (Refs. [1]- [5]), genetic

algorithms (Refs. [6]- [8]), or response surface methods
(Refs. [9]-[12]) have been published in this area. In this

work, a global optimization methodology, based on the

radial-basis neural networks (RBNN) and the polynomial-
based response surface method (RSM) and under

development by the authors (Refs. [13]- [14]), is

employed to facilitate design optimization for supersonic
turbines intended for the reusable launch vehicle (RLV)

applications.
We select to use the global optimization

technique because it has several advantages when
compared to local methods [15]: (1) they do not require

calculation of the local sensitivity of each design variable,
(2) they can utilize the information collected from various

sources and by different tools, (3) they offer multi-
criterion optimization, (4) they can handle the existence

of multiple design points and trade-offs, (5) they easily
perform tasks in parallel, and (6) they can often

effectively filter the noise intrinsic to numerical and
experimental data. Among alternative global

approximation techniques, the RSM has gained the most
attention due to its flexibility in handling different types

of information [16]. The RSM expresses the objective and
constraint by simple functions, often polynomials, which

are fitted to the selected points. One can use RBNN-based
and polynomial-based RSM techniques to model the

relationship between design variables and
objective/constraint functions of the overall approach. In
the present work, the RBNN is employed to supply

additional data to help construct improved polynomial

representation of the response surface. In other words,
RBNN feeds data into polynomials before the

optimization task is conducted. Such a practice has been
shown to be beneficial (Refs. [12]- [14]), and can help

assess the adequacy of the response surface model when
there is insufficient amount of information available.

With the aid of the global optimization
technique, both preliminary and detailed shape designs

are considered. The main purpose for preliminary
optimization is to determine the optimum configuration in

terms of the number of stages, sizing, RPM and
compatibility between operating variables [17]. Based on

this exercise, shape optimization is conducted for each

vane and blade. The preliminary design relies heavily on
simplified one-dimensional and semi-empirical formulas,

whereas the shape optimization depends largely on the
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Navier-Stokes computational fluid dynamics (CFD)
simulations.

In any optimization process, and especially

with global optimization techniques, the amount and the
distribution of data required is a critical issue. To help

address this question, we have investigated the issues

related to the design of experiments (DOE). Typically,
the face centered composite design (FCCD)[18] is

employed. This approach can be quite costly as the
number of design variables increases. Additional

criteria can be established to help improve the
efficiency and effectiveness of the construction of the

response surface by employing the concept of

orthogonal arrays (OA)[19] and D-optimality [20].
These methods will be discussed in the following
sections.

2. APPROACH

As shown in Figure 1, the entire optimization

process can be divided into three parts: (1) data
generation, (2) polynomial or NN generation phase for

establishing an approximation, and (3) optimizer phase.
In the first phase, the representation of design space is

decided. In the second phase, polynomials or NN (or
combined) models are generated with the available

training data set. Finally, in the third phase the
optimizer uses the polynomial or NN approximations

during the search for the optimum until the final
converged solution is obtained.

The optimization technique follows our previous
works for optimizing fluid machinery, such as diffuser,

injector, and airfoil, as presented in Refs. [13]-[15],
[17], and [21]-[23]. The neural network technique and

the polynomial RSM are integrated to offer enhanced
optimization capabilities by Shyy et al. [14].

Optimization of a supersonic turbine for pre]iminary
design, using the polynomial RSM, is presented by

Papila et al [17]. Papila et al. [21] investigated the
effect of data size and relative merits between

polynomial and neural networks-based RSM in

handling varying data characteristics. Issues related to
numerical noises and the interaction between CFD

models and RSM are addressed by Madsen et al. [22].
In Tucker et a1.[23], a first effort is made to apply RSM

for injector optimization. Refs. [13]&[14] offers a

comprehensive update of the concepts and applications
of the global optimization method, including the above

mentioned examples.

2.1 Overview of the Response Surface Literature
Polynomial-based response surface techniques

(parametric regression), when compared to neural

network (NN)-based RSM (non-parametric regression),
has an advantage in the ease of computing since finding
the polynomial coefficients is a linear regression

process while finding the weights associated with the

neurons of a NN is, in general, a non-linear regression

process. The linearity decreases the computational cost
and provides an advantage when the simulations have
substantial amount of numerical noise. However, it is

possible to design a linear NN model. The RBNN is such

an example. In terms of the ability of filtering noise from
experimental data, polynomial-based RSM has certain

advantages over NN's. However, if the number of

neurons used to design the NN is not the same as the data,
then, by definition, filtering is also performed by the NN.

When it comes to handling complex functions, neural

networks are more flexible to fit complex functions. This
advantage is particularly noticeable if the level of
numerical noise is low.

A growing number of papers have been

published to combine NN and polynomial-based RSM
approximations, see e.g., Refs. [11]-[14] and [24]-[25].

For example, the work done by Rai and Madavan Ill]&
[24]-[25], Madavan et al. [12], and Shyy et al. [14]

suggest that NN can be effectively used to supplement the
existing training data to help generating a more accurate

polynomial. RBNN may lack satisfactory filtering
properties in some cases as stated by Papila et al. [21] and

Vaidyanathan et al. [28]. However, once trained, RBNN
can generate additional design data easily to feed the

polynomial-based RSM. This approach is also employed
in this work.

2.2 Radial Basis Neural Networks (RBNN)

Neural networks are massively parallel
computational systems comprised of simple nonlinear

processing elements with adjustable interconnections
[29]. Neural networks simulate human functions such as

learning from experience, generalizing from previous to
new data, and abstracting essential characteristics from

inputs containing irrelevant data [30]. The predictive
ability of the network is stored in the inter-unit connection

strengths called weights obtained by a process of
adaptation to, or learning from, a set of training patterns.

Training of a network requires repeated cycling through
the data and continues until the error target is met or until
the maximum number of neurons is reached.

This article focuses on RBNN, which is a multi-

layer network with hidden layers of radial-basis function

and a linear output layer. Radial-basis functions (RBF)

are activation functions of which the response decreases
or increases monotonically with distance between the

input and the RBF's center. The distance between two
points is determined by the difference of their coordinates

and by a set of parameters [31 ].
The main advantages of RBNN approach is the

ability of reducing the computational cost due to the
linear nature of RBNN [32]. RBNN is a linear model

since the basis functions, h in Eqn. 1, and any parameters,

which they might contain, are fixed through the training

process.
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m

f(x) = Z wjhj(x) (1)
j=l

where w is the coefficients of the linear combinations or

weights and h is the basis functions.
In non-parametric regression or supervised

learning with linear models, least squares principle that
minimizes the sum-squared errors can be applied for

training and then m unknown weights can be solved
based on the mean square error of the training set.

However, the criterion of the mean square error of the

training set is unlikely to achieve reasonable results for

predicting the unknown input. For this purpose so
called test data should be used when selecting the
model. This is the basic form of cross-validation [31]&

[32]. In this study, the RBNN model is designed by

using the functions developed by Orr [31]-[33] for
Matlab [34]. Among several choices given by Orr [31],
the RBNN method based on ridge regression [32] is

used since it can optimize the RBF widths to improve
the data fitting capability. In order to choose between

competing models, the maximum marginal likelihood
method [33] is used as a model selection criteria.

2.3 Polynomial-Based Response Surface Techniques
The polynomial-based RSM models the

system with assumed order and unknown coefficients.
The solution for the set of coefficients that best fits the

training data is a linear least square problem [18], and
so it is computationally straightforward. The linearity
also allows us to use statistical techniques such as DOE

to find efficient training sets. Statistical techniques are
also available for identifying polynomial coefficients
that are not well characterized by the data. These

coefficients are discarded in order to improve the

predictive capability of the polynomial. Finally, these
statistical tools allow us to estimate the error of the

polynomial-based model at points not used for training,
that is, its prediction error.

In this study, the response surfaces are

generated by standard least-squares regression using
JMP [35], a statistical analysis software having a

variety of statistical analyses functions in an interactive
manner. The global fit and prediction accuracies of the

response surfaces are assessed through statistical
measures such as the t-statistic and the root mean

square error (rms-error) variation.

2.4 Design of Experiment
In order to minimize the effect of the noise on

the fitted polynomial and neural network, and to
improve the representation of the design space, the

design of experiments (DOE) procedure can be used to
select the data to be used in construction of the response

surfaces or training of the RBNN. There are a number
of different designs of experiment techniques in the

literature, as reviewed in Ref. [36]. Issues related to our

approach are reviewed in Ref. [17], and will not be

repeated here. In this study, face centered composite
design (FCCD), orthogonal arrays (OA), and D-optimal

design methods are used to select the effective design

space. The FCCD is widely used for fitting second-order
response surfaces [18]. It selects design points at the
corners of the design space, center of the faces and the

center of the design space. Therefore, FCCD yields
(2_+2N+1) points, where N is the number of design
variables. On the other hand, an orthogonal array is a
fractional factorial matrix that assures a balanced

comparison of levels of any factor or interaction of factors

[19]. Because the points are not necessarily at vertices,
orthogonal array tools can be more robust than the face-
centered cubic design. Based on the design of

experiments theory, OA can significantly reduces the
number of experimental configurations [21]. Finally, the

D-Optimal design minimizes the generalized variance of
the estimates that is equivalent to maximizing the
determinant of the moment matrix [18]. The D-Optimal

Design approach makes use of the knowledge of the

properties of polynomial model in selecting the design
points. This criterion tends to emphasize the parameters
with the highest sensitivity [36].

2.5 Optimization Procedure
In the optimization process, the set of design

variables is selected to form a design space. The present

optimization problems are constrained, which can be

formulated as min{f ( x)} subject to Ib < x < ub, where lb

is the lower boundary vector and ub is the upper boundary

vector of the design variables vector x. Since the goal is to
maximize objective function fix) can be written as -g(x),

where g(x) is the objective function. Additional linear or
nonlinear constraints can be incorporated.

The main focus in the present work is the

interplay between the number of design variables and the

predictive capability and input requirement of the RSM.
Microsoft Excel Solver [37] is used as an optimization

toolbox together with the polynomial response surface
technique throughout the work. Solver applies generalized

reduced gradient method [38] to find the maximum or
minimum of a function with given constraints.

3. RESULTS AND DISCUSSION

3.1 Preliminary Design

For preliminary design stage, we have

considered single-, 2- and 3-stage turbines with the
number of design variables increasing from 6 to 11 then
to 15, in accordance with the number of stages. The

preliminary design parameters for single-, 2- and 3- stage
turbines are shown in Table 1.

The preliminary design data is obtained by using

a computer code: meanline [39]. The meanline code
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performs one-dimensional (1D) analyses that employ

loss correlations gleaned from experimental databases.

It predicts performance, calculates gas conditions and
velocity triangles, generates a flowpath elevation, and

estimates the turbopump weight. It also provides an
initial spanwise distribution of row exit angle based on

the assumption of constant axial velocity and
conservation of radial momentum.

The optimum preliminary design is obtained

by using polynomial-based RSM coupled with a
meanline analysis. For this design stage, the purpose is

to maximize overall T-S Efficiency, r/. and minimize
overall weight, IV, simultaneously for each number of

stages case, 1, 2 or 3. A function to correlate turbine

efficiency and turbopump weight to payload capacity is
derived from system models.

As discussed in Ref [17], in order to ascertain

required predictive capability of the RSM, a two-level

domain refinement strategy has been adopted. The

accuracy of the predicted optimal design points based
on this approach is improved. The results of payload

increment based optimization are illustrated in Figure 2
and Table 2 for 1, 2, and 3-stage designs. From this

figure, it can be observed that, the optimum Apay
increase from single-stage to 2-stage, whereas it
decreases from 2-stage to 3-stage. According to the

formula for Apay, the improvement in efficiency can
not compensate the penalty from higher weight as the

number of the stage increases. The 2-stage turbine gives

the best Apay improvement, indicating that it is the
optimum configuration (Table 3).

3.2 Detailed Shape Design
In detailed design, the shapes of the vanes and

blades are generated. To generate optimum detailed

designs, CFD analysis, RBNN and polynomial-based
RSM are used. Ideally, the detailed optimization would

be conducted in one step all row optimized
simultaneously. However, the sheer number design

variables made this approach impractical. Therefore,
first the mean airfoil contours of each component are

optimized. Airfoil contours are generated using a
geometry generator developed for this task that could

read a matrix design variables, generate and plot the
airfoil, and write a preliminary input file for the CFD

grid generator [39]. Because a large amount of loss in a
supersonic turbine can be attributed to interactions

between the first two rows, unsteady CFD calculations

are performed for the stage, running parametrics on the
vane first with the baseline blade, and then performing

the blade parametrics with an optimized vane. For
detailed design, CFD calculations are performed using

WILDCAT, a parallelized, unsteady, quasi three-
dimensional (3D) Navier-Stokes code that utilizes

moving grids to simulate the rotor motion, is used
(Refs. [6] & [39]-[40]). This paper presents the progress

made to date for the first vane and blade design

optimization.

(a) The 1_t Vane

There are 7 design parameters for detailed design

of the first vane (Table 4). These are leading edge (LE)

pressure side height/axial chord, H/L, uncovered turning,
Uric.Turn, and Bezier curve control handles, L1, L3F,

L3R, L4, and L5 shown in Figure 3. For this case, FCCD

yields 143 possible design points. After the addition of 6
more levels as shown Figure 4, 437 design points are

obtained. Using D-optimality 203 design points are

selected to generate CFD solutions.
The objective for detailed design optimization is

the stage total-to-total efficiency, r/r-r. The minimum
thickness that should be greater or equal to 0.055 is the

only design constraint of the first vane optimization.
A three-cycle optimization strategy has been

adopted for the first vane. The statistical summary of the
response surface models resulting from the three cycles

are shown in Table 5. In Cycle 1, we have employed
response techniques using reduced cubic polynomial

model to identify the optimal design points. The design
variables corresponding to the optimized vane shape are

shown in Figure 5. It is observed that the optimum design

approaches the boundary of the design space. Naturally, it
seems fruitful to consider expanding the design space to
further improve the design by generating additional

information in an extended region. Accordingly, in Cycle
2, the design space is modified by extending the ranges of

two design parameters, namely, L4 and L5. As shown in
Table 6, 16 new data are added to the database. The

reduced cubic polynomial response surface is again
constructed based on the extended design space.

In Cycle 3, a technique based on the NN-

Enhanced RSM is developed. The procedures can be
summarized as follows:

• RBNN is constructed for the subset of 177-point
from the 203-data from Cycle 1 and is tested by using the
rest of 26-data.

• The trained RBNN is used to predict 87

additional data (50-OA data +37 previously excluded
FCCD data). These data are added to the existing data set

of 219-point used in Cycle 2.

• In Cycle 3, with the enhanced data, the reduced

cubic polynomial response surface is constructed and
tested by using the same 26-data.

• The optimum design is determined for the

enhanced design space in Cycle 3.

The results of the optimal designs from all cycles
and the CFD results for Cycle 2&3 are summarized in

Table 7. It is noted that the second and third optimization
cycles lead to a converged optimal design. Based on the

diagnosis (e.g., contour plots), it appears that the response
surface is quite flat with respect to certain design

variables (e.g., L4 and L5), in regions close to the optimal
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designs. Consequently, small deviations in other
variables can cause noticeable shifts. However, there

are multiple design points, including the best data point
from the CFD runs, which offer essentially the same

performance. This outcome means that other
considerations such as stress distribution and

manufacturing difficulties can be usefully incorporated

into the final selection stage.

Figure 5 shows the comparison of the optimal
design variables (normalized in to (-1,+1) range) for

reduced cubic models for all design cycles. Figure 6

shows that the designs converge to the same
configuration between Cycles 2 and 3. On the other

hand, as shown in Figure 7, there are multiple design
points which exhibit essentially the same performance

(within the modeling uncertainty), albeit with much
different geometries. To help better understand these

observations, we assess the sensitivity of the two

geometric variables (L4 and L5) in Figure 8, which
shows that the performance of the vane is very

insensitive to L5. The two shapes shown in Figure 7 are
mainly caused by L5, which explains why two very

different vane shapes give essentially the same
performance. From the structural point of view, the

value of L5 to produce thicker profile is preferable.
This example demonstrates that the global optimization

technique enables one to compare designs based on
insight into the entire design space, which allows a
suitable selection to be made with additional factors

considered. Figure 9 shows the Macb contours of the

two vanes shown in Figure 7.

(b) The 1 st Blade

There are 11 design parameters for detailed
design of the first blade (Table 8). These are LE

pressure side height/axial chord (H/L), Leading edge
metal angle (Beta1), uncovered turning (Unc.Turn), and
6 different Bezier curve control handles (LI, L2F, L3R,

L4, L5, and L7, see Fig. 3), channel convergence ratio
(ChanCR), and the circle factor (circfac). Again, the

stage total-to-total efficiency r/r-r, is selected as the
objective function to be maximized for the blade
design. For the first blade, 3 different constraints need

be satisfied: (1) minimum thickness that should be

greater or equal to trailing edge diameter, (2)
Ll+L2F+(1.9*circfac) should be smaller than 2.7, and

(3) the suction side radius of curvature must be greater
than 5 times of the trailing edge radius.

For this case, a 5-level OA-based procedure has been
adopted to select 250-data for the CFD code to generate

solutions. A software tool developed by Owen [19] is
used for constructing OA designs. Since these points

are located at either the edge or the center of the design

space, additional 23 FCDD data at the center of the
faces are added. Finally, 38-data along the main

diagonal of the design space is generated. In short, a

total of 311 possible design points are selected to generate

the CFD solutions. However, only 139 out of the 250 OA-
selected data, 21 out of the 23 FCCD-selected data, and

17 out of the 38 diagonal-based data are obtained from the

CFD tool. Therefore, only a total of 177 possible design
points, out of the 311 cases, have been collected. The

cases are not completed because the airfoil shapes are

unrealistic, which cause either excessively high losses, or
prevent the grid generation process from running

appropriately. Figure 10 illustrates the distribution of both

types of cases. As one can see from the figure, the
difficulty is along the diagonal ends as well as on the

edges of the design space. In Figure 11, a sample blade
shape from the cases for which the CFD code does not

converge is illustrated. With only 177-data generated for
11 design variables, RBNN is used to produce additional

information, as described below.

• RBNN is trained based on the 160 data points
from the above-mentioned 177 CFD-generated data, with

the remaining 17 points reserved to tune the configuration
of the neural networks.

• The trained RBNN is used to generate additional

2204 possible design points. 2070 of them are selected

using FCCD data modified as shown in Figure 12 and the
rest 134 of them are the cases for which CFD code does

not converge.

• Full quadratic and reduced cubic response surface
models are constructed for the first blade. A total of 38-

data are used to test both models; of which, 17 are from

the CFD runs (originally selected as the test data), and 21

are from the NN-enhanced data. The statistical summary
for both models, with and without NN-enhanced data, is
shown in Table 9.

• In the course of performing the optimization

task, it is realized that out of the 11 design variables, 5
of them, responsible for the shape in the rear portion of

the upper blade surface, can be optimized first, because
various plausible shapes converge to the similar values

of them. Accordingly, one can reduce the design space
from 11 to 6 variables. The revised design space is
summarized in Table I0, which shows that the 5 fixed

design variables are of single values, while the other 6

variables have different ranges. Two designs are
presented, as shown in Table 11 and Figure 13. With 6

design variables fixed, the two blade shapes yield very
comparable performance. Their shapes in the upper

rear portion are, as expected, virtually the same. On the
other hand, their front portions are noticeably different,

with Blade-1 exhibiting more variations than Blade-2.

Again, with the insight offered by the global model, we
have an opportunity to evaluate not only the sensitivity

of each design variable, but also additional trade-offs

between comparable designs.
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4. CONCLUDING REMARKS

A methodology to improve the supersonic

turbine performance has been developed for

preliminary and detailed design. A global optimization
framework combining the RBNN and the polynomial-
based RSM is constructed. Based on the optimized

preliminary design, shape optimization is performed for
the first vane and blade of an optimized 2-stage

supersonic turbine. The results obtained can be
summarized as follows:

(1) The design of experiment approach is
critical in reducing the data size needed by the

optimization task.

(2) A major merit of the global optimization
approach is that it enables one to adaptively revise the

design space to perform multiple optimization cycles.
(i) As evidenced by the three optimization-

cycles conducted for the first vane, capabilities to

adaptively refine the optimization scope and procedure
can be critical when an optimal design approaches the

boundary of a pre-defined design space.
(ii) For the first blade, the optimization process

indicates that 5 out of the 11 design variables can be

chosen first, leaving the design space to reduce to have
6 variables. Based on the reduced set of design

variables, the optimization task can be handled more

effectively.
(3) By inspecting the influence of each design

variable, one can also gain insight into the existence of
multiple design choices and select the optimum design
based on other factors such as stress and materials

considerations.

(4) The NN-enhanced RSM helps to improve
the accuracy of the response surface, and allows the

optimization task to be conducted with smaller number
of CFD runs.
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Table 1. Preliminary Design Variables (All geometrical variables are normalized by baseline values)
(a) Sin

Design Variable
Mean diameter

le-stage turbine
Lower Limit

0.5
Upper Limit

1.5

RPM 0.7 1.3

Blade annulus area 0.7 1.3

Vane axial chord 0.4 1.7

Blade axial chord 0.3 1.1

Stage reaction. 0.0 0.5

(b) Additional variables for 2-stag turbine
Lower LimitDesign Variable Lower Limit

1st blade height 0.9
2ndvane axial chord 0.3

2na blade axial chord 0.3

2ndstage reaction 0.0

1st stage work fraction 0.5

(c) Additional variables for 3-sta

1.5

1.8

1.1

0.5

0.85

e case

Design Variable Lower Limit Lower Limit
3 ra vane axial chord 0.2 1.4

3 rd blade axial chord 0.2 1.1

0.5

0.8

0.3

0.0

0.4
3 ra stage reaction

1st stage work fraction
2na stage work fraction 0.1

Table 2. Optimization summary for 1, 2 and 3-stage turbine with response surface in refined design space

(All output parameters are normalized by the baseline values)

'qopt Wopt Apayopl

1-stage 0.77 0.73 -0.21

Apay 2-stage 1.13 1.04 0.15

3-stage 1.20 1.54 0.11

Table 3. Optimum 2-stage Turbine Parameters (All geometrical variables are normalized by baseline values)

Design Variable
Mean diameter

Optimum
1.1

RPM 1.0

Blade annulus area

1st blade height
l_t Vane axial chord

1_tBlade axial chord

2ad vane axial chord

2"d blade axial chord
st

1 stage reaction
2na stage reaction

2"d stage work fraction

1.1

1.5

1.4

0.7

0.8

0.6

0.1

0.5

0.9
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Table 4. Detailed Design Variables for the first vane (All variables are normalized by baseline values)

Design Variable Lower.Limit Upper Limit
H/L

Uncovered Turning
L1

L3F

L3R

L4

L5

• 0.79 1.19

-1.20 -0.20

0.36 2.00

0A4 1.76

0.25 2.00

0.05 1.25

0.13 2.00

Table 5. Quality the Polynomial Response Surface Models for the Original (Cycle 1), Extended (Cycle 2) and NN-

Enhanced (Cycle 3) Design Spaces for the first vane (The riaean of response is normalized by the baseline tiT_T)

Summary of Fit

Reduced Cubic Model

(203-data) (Cycle 1)
Reduced Cubic Model

(219-data) (Cycle 2)
Reduced Cubic Model

(306-data) (Cycle 3)

RSquare RSquare

Adj.

Root Mean

Square Error

Observations (or

Sum Wgts)

0.8 0.8 1.1% 203

0;8 0.8 1.1% 219

0.7 0.7 1.3% 306

Table 6. Comparison of the Original (Cycle 1), Extended (Cycle 2) and NN-Enhanced (Cycle 3) Design Spaces for the
first vane

Design Variab'}e .

HIE .

Uncovered Turning
L1

L3F

L3R

L4

L5

Cycle 1 "
Lower Limit

",0.79
-1.20

0.36

0.44

0.25 "

0.05 •

0.13

Cycle 2

Upper Limit

1.1.9 .
-0,20

,2.00 ....
1.76

r ,

2.00

1.25

2.00

Lower Limit
0.79

=1.20

0.25

0.01
0.01

Upper Limit
1.19

-0.20

2.00

1.76

2.00

1.35

Cycle 3
Lower Limit

0.79

-1.20

0.36

0.44

0.25

0.01

Upper Limit
1.19

-0.20

2.00

1.76

2.00

1.35

2.50 0.01 2.50

Table 7. Optimum Designs

.... for the first

for the Original (Cycle 1), Extended (Cycle 2) and NN-Enhanced (Cycle 3) Design Spaces

vane (All design variables and rl-r_Tare normalized by the baseline values)

H/L Unc. Tfirning L1 L3F L3R L4 L5

0.791 0.200

0.791 0.200

0.791 0.200

2.000

2_000

2.000

0.441 2.000 1.250

0.441 2.000 1.350

0.441 2.000 1.350

2.000

2.500

2.500

Original Design Space 203-data
(Cycle 1)

Extended Desig n Space 219-data
(Cycle 2)

NN-Enhanced Design.Space' 306-data
(Cycle 3)

rlr-T CFD

1.042 N/A

1.044 1.031

1.043 1.031
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Table 8. Detailed Design Variables for the first blade (All variables are normalized by baseline values)

Design Variable Lower Limit Upper Limit
H/L -100.0 200.0

Betal 0.9 1.1

Uncovered Turning 0.4 1.3
L1

L2F

L3R

L4

L5

L7

Channel Convergence Ratio
Circle Factor

0.1 1.1

0.5 1.8

0.5 2.6

0.3 1.7

1.0 2.1

0.7 1.4

1.0 1.1

0.1 5.0

Table 9. Quality the Pol

Summary of Fit

Quadratic Model without NN-

data (Plain CFD data) (Cycle 1)

Quadratic Model (NN-

Enhanced data) (Cycle 2)

nomial Res

RSquare

0.78

mnse Surface Model for the first blade

RSquare

Adj .

0.57

Root Mean

Square Error

3.82%

Observations (or

Sum Wgts)

160

0.87 0.86 1.74% 2343

Reduced Cubic Model (NN- 0.97 0.97 0.81% 2343
Enhanced data) (Cycle 3)

Table 10. Summary of the revised design variables and ranges for the first blade (All design parameters are

normalized by the baseline values).

Design Variable Lower Limit Upper Limit
H/L -25.00 -25.00

Uncovered Turning 0.63 0.63

L3R 1.55 1.55

L4 0.68 0.68

Circle Factor 3.78 3.78

Table 11. Optimum cases for the first blade obtained by reduced cubic model with NN-enhanced data for modified

variable ranges (All design parameters and rlT-W are normalized by the baseline values).

Blade- I

Blade-2

H/L Betal Unc. L1 L2 L3 L4 L5 L7 Chan Circ.
Turn CR Fac

-25.00 0.94 0.63 0.59 1.48 1.55 0.68 1.78 0.66 1.04 3.78

-25.00 0.99 0.63 0.67 1.36 1.60 0.67 1.44 0.76 1.06 3.80

TIT-T TIT-T
RSM CFD

1.04 1.05

1.07 1.04
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Figure 1. Schematic of the Global Optimization Procedure
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Figure 6. Summary of the three optimization cycles for the first vane (a) Optimal cross sections (Optimal designs of

Cycles 2 and 3 coincide since they converge to the same configuration), and (b) Optimum design variables (where -1

and +1 show the minimum and maximum values of the design variables in the original design space, respectively).
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Figure 7. Illustration of multiple possibilities for the

first vane. Both designs offer comparable efficiency, but

the thicker profile is preferred from the structural

considerations.

Efficiency contours for 203-data around highest efficiency

-................'i
iI I IlI

-1 0 1
L4

Figure 8. Efficiency contours for 203 data of the

Cycle 1, which shows that L5 has very little impact

on the performance of the first vane.
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Figure 9. Instantaneous absolute Mach number contours for two first vane designs of essentially equal performances.
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Figure 11. Sample Case without CFD solutions from Design Space of the first blade.
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Figure 12. Schematic of the additional data generated for the first blade in 2D.
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Figure 13. Optimum Shapes for the first blade obtained by reduced cubic model with NN-enhanced data for modified

variable ranges defined in Table 1.
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